Today’s mission-critical radar applications require high performance frequency control and timing solutions in smaller, lighter, more power-efficient, and cost-effective form factors. Quantic Wenzel innovates by developing low-phase noise and low-g sensitive technologies into SWaP-C efficient, affordable products:
At Quantic Wenzel we know that your mission-critical program needs are financially and strategically important to your organization, and we take the responsibility to help you achieve your goals very seriously. From prototype to production, we consistently provide proactive, world-class customer service in our efforts to research, design and deliver innovative frequency control and timing solutions with industry-leading performance.
Quantic Wenzel is trusted to support the mission-critical frequency control and timing needs of some of the finest companies in the world.
Meet Bruce Carlson, Director of Engineering. New to Quantic Wenzel, Bruce plays a key role by leading our engineering department and supporting our customers’ mission-critical RF and microwave system applications. This interview sheds light on Bruce’s extensive career, expertise, vision for the future of our engineering team, and other valuable insights. Question #1: Can you tell us about your background and what led you to join Quantic Wenzel? Bruce Carlson: I have over 35 years of experience in RF and […]
Austin, TX.— February 20th, 2024—Quantic Wenzel, an industry leader in crystal oscillators, frequency sources, and integrated microwave assemblies has been selected to engineer and manufacture key electronic assemblies for Northrop Grumman’s AN/SLQ-32(V)7 SEWIP Block 3 Program. The program is the third in a series of incremental upgrades that adds an electronic attack (EA) capability to the AN/SLQ-32 electronic warfare system to defend ships against anti-ship missiles. Northrop Grumman chose Quantic Wenzel for the multi-year program in part because of the company’s […]
Expand Your Crystal Oscillator Vibration Mitigation Knowledge In this Microwave Journal article, we present an accelerometer-based vibration compensation system that mitigates the effects of vibration on OCXO dynamic phase noise. We examine the use of this active compensation system as well as passive vibration isolation and discuss challenges and design considerations related to these techniques. Complete the form below to access the technical article. *Posted with permission from Microwave Journal.