Our team understands how quickly market cycles move. Our customers trust us to deliver frequency control and timing solutions that meet stringent time-to-market and budget objectives.
At Quantic Wenzel we know that your mission-critical program needs are financially and strategically important to your organization, and we take the responsibility to help you achieve your goals very seriously. From prototype to production, we consistently provide proactive, world-class customer service in our efforts to research, design and deliver innovative frequency control and timing solutions with industry-leading performance.
Quantic Wenzel is trusted to support the mission-critical frequency control and timing needs of some of the finest companies in the world.
The latest generation of cellular networks have revolutionized connectivity with unprecedented speed and capacity. To extend these benefits globally, developments are shifting towards space-based cellular networks. Low Earth Orbit (LEO) satellite constellations are being deployed to provide service from orbit, bridging connectivity gaps in remote and underserved areas. However, in the challenging space environment, maintaining precise frequency control and minimizing phase noise has been a challenge for RF engineers. Phase noise can impact data transmission quality, especially at high frequencies. […]
When it comes to frequency control, achieving precise timing and synchronization is critical. However, numerous factors can degrade the performance of time-sensitive applications, and one such factor is dynamic phase noise. In this technical article, we will delve into the concept of dynamic phase noise, explore its effects on radio frequency and microwave system performance, and discuss several techniques that engineers can employ to mitigate its impact. What is phase noise? Before diving into dynamic phase noise, let’s start with […]
Expand Your Crystal Oscillator Vibration Mitigation Knowledge In this Microwave Journal article, we present an accelerometer-based vibration compensation system that mitigates the effects of vibration on OCXO dynamic phase noise. We examine the use of this active compensation system as well as passive vibration isolation and discuss challenges and design considerations related to these techniques. Complete the form below to access the technical article. *Posted with permission from Microwave Journal.